summaryrefslogtreecommitdiff
path: root/lib/rust/src/grid.rs
blob: cc2e2e61c735b364d0383b5dc2b674ca6b5beff7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#[derive(Debug)]
pub struct Grid<T> {
    data: Vec<T>,
    width: usize,
    height: usize,
}

type Point = (usize, usize);
type Direction = (i64, i64);

pub fn chebyshev_ball(n: i64) -> impl Iterator<Item = Direction> {
    (-n..=n).flat_map(move |x| (-n..=n).map(move |y| (x, y)))
}

impl<T> Grid<T> {
    pub fn new(grid: Vec<Vec<T>>) -> Grid<T> {
        // unfold grid. assume that width/height are consistent
        Grid {
            height: grid.len(),
            width: grid.first().map_or(0, Vec::len),
            data: grid.into_iter().flatten().collect(),
        }
    }

    pub fn at(&self, (x, y): Point) -> Option<&T> {
        if x >= self.width || y >= self.height {
            None
        } else {
            self.data.get(x + y * self.width)
        }
    }

    pub fn is_in(&self, p: Point) -> bool {
        self.at(p).is_some()
    }

    pub fn points(&self) -> impl Iterator<Item = Point> {
        (0..self.width).flat_map(|x| (0..self.height).map(move |y| (x, y)))
    }

    pub fn move_pos(&self, (x, y): Point, (dx, dy): Direction, n: i64) -> Option<Point> {
        let x = (i64::try_from(x).ok()? + n * dx).try_into().ok()?;
        let y = (i64::try_from(y).ok()? + n * dy).try_into().ok()?;
        let p = (x, y);
        if self.is_in(p) { Some(p) } else { None }
    }

    pub fn ray(&self, p: Point, dp: Direction) -> impl Iterator<Item = &T> {
        (0..)
            .map(move |n| self.move_pos(p, dp, n))
            .take_while(Option::is_some)
            .flatten()
            .map(|p| self.at(p))
            .flatten()
    }
}

#[cfg(test)]
mod tests {
    use std::collections::HashSet;

    use super::*;

    #[test]
    fn chebyshev_ball_zero() {
        assert_eq!(
            chebyshev_ball(0).collect::<HashSet<_>>(),
            [(0, 0)].iter().cloned().collect()
        )
    }

    #[test]
    fn chebyshev_ball_one() {
        assert_eq!(
            chebyshev_ball(1).collect::<HashSet<_>>(),
            [
                (-1, -1),
                (-1, 0),
                (-1, 1),
                (0, -1),
                (0, 0),
                (0, 1),
                (1, -1),
                (1, 0),
                (1, 1)
            ]
            .iter()
            .cloned()
            .collect()
        )
    }

    #[test]
    fn chebyshev_ball_two() {
        let points = chebyshev_ball(2).collect::<HashSet<_>>();
        assert_eq!(points.len(), 25);
        let norms = points
            .iter()
            .map(|(x, y)| x.abs().max(y.abs()))
            .collect::<Vec<_>>();

        assert_eq!(norms.iter().filter(|&&n| n == 0).count(), 1);
        assert_eq!(norms.iter().filter(|&&n| n == 1).count(), 8);
        assert_eq!(norms.iter().filter(|&&n| n == 2).count(), 16);
    }

    #[test]
    fn create_grid() {
        let _grid = Grid::new(vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]]);
    }

    #[test]
    fn at_exists() {
        let grid = Grid::new(vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]]);
        assert_eq!(grid.at((1, 0)).unwrap(), &2);
    }

    #[test]
    fn at_not_exists() {
        let grid = Grid::new(vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]]);
        assert!(grid.at((17, 10)).is_none());
    }

    #[test]
    fn points_empty() {
        let grid = Grid::<u64>::new(vec![vec![]]);
        assert!(grid.points().eq(vec![]))
    }

    #[test]
    fn points_equal_size() {
        let grid = Grid::new(vec![vec![1, 2], vec![3, 4]]);
        let points = grid.points().collect::<HashSet<_>>();
        assert_eq!(
            points,
            [(0, 0), (0, 1), (1, 0), (1, 1)].iter().cloned().collect()
        )
    }

    #[test]
    fn points_unequal_size() {
        let grid = Grid::new(vec![vec![1, 2], vec![3, 4], vec![5, 6]]);
        let points = grid.points().collect::<HashSet<_>>();
        assert_eq!(
            points,
            [(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)]
                .iter()
                .cloned()
                .collect()
        )
    }

    #[test]
    fn ray_empty() {
        let grid = Grid::<u64>::new(vec![vec![]]);
        assert!(grid.ray((1, 1), (1, 2)).eq(vec![].iter()))
    }

    #[test]
    fn ray_single_element() {
        let grid = Grid::<u64>::new(vec![vec![1]]);
        assert!(grid.ray((0, 0), (1, 2)).eq(vec![1].iter()))
    }

    #[test]
    fn ray_horizontal() {
        let grid = Grid::new(vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]]);
        assert!(grid.ray((0, 0), (1, 0)).eq(vec![1, 2, 3].iter()))
    }

    #[test]
    fn ray_vertical() {
        let grid = Grid::new(vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]]);
        assert!(grid.ray((1, 0), (0, 1)).eq(vec![2, 5, 8].iter()))
    }

    #[test]
    fn ray_diagonal() {
        let grid = Grid::new(vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]]);
        assert!(grid.ray((0, 0), (1, 2)).eq(vec![1, 8].iter()))
    }
}